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Barkhausen pulse structure in an amorphous ferromagnet:
Characterization by high-order spectra
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Frequency-dependent third and fourth moments of the Barkhausen signal from a soft amorphous ferromag-
net are measured. The data indicate strong coupling between the power in different frequency bands. The sign
of the time asymmetry of a third-order voltage correlation indicates that the high-frequency Barkhausen events,
on average, systematically precede the low-frequency Barkhausen events. The results are inconsistent with
several commonly employed models.@S1063-651X~98!10205-2#

PACS number~s!: 05.40.1j, 75.60.Ej
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INTRODUCTION

Since its discovery, the Barkhausen effect has proven
ful in the study of domain wall dynamics in soft ferroma
netic materials. The simplest early models describ
Barkhausen jumps as individual events of the same ma
tude, duration, and shape, Poisson distributed in time@1#.
More plausible models@2,3# allow for distributions of pulse
durations and heights. In such models it is often simply
sumed that the spectral densityS1@ f 1# comes primarily from
pulses whose width is about 1/f 1 @2–4#, giving simple math-
ematical relations among scaling laws for the pulse durat
frequency of occurrence, height, andS1@ f 1# @5#. In contrast,
the model of Alessandroet al. ~designated ABBM! @6# de-
scribes the motion of a domain wall characterized by a sin
position moving over a spatially varying coercive fiel
There have long been suggestions@7# that the domain wall
motions are self-organized, meaning that the noise statis
would be determined by self-consistent properties of m
interacting domain-wall segments, rather than directly by
statistics of separately pinned domains or of the underly
coercive field. Recently some papers, e.g.,@8#, have claimed
evidence for self-organized criticality.

So far, the most detailed successful experimental pre
tions have come from the ABBM model@9,10#, applied to
soft magnetic metals, but in its original formulation, th
model invoked physically unrealistic extended spatial cor
lations in the coercive field@11#. Recent experiments indicat
that a correct physical picture of domain wall dynamics m
include coupling between neighboring segments of dom
wall and/or other domains@11,12#. Progress has now bee
made toward constructing a model of a flexible domain w
including long-range magnetic dipole interactions@12,13#,
with the ABBM picture emerging in some limits as an effe
tive theory for the net magnetization changes rather than
direct picture of a single domain-wall position@14#. No
model has yet been able to clarify the variability of the hig
frequency power spectrum exponent, which experiment
ranges between 1.5 and 2@15#.

In this paper we explore several relevant questions us
frequency-dependent third and fourth moments of
571063-651X/98/57~6!/6363~7!/$15.00
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Barkhausen signal. How the spectral shape~and exponent, if
one exists! is to be determined from any model depends
whether the high-frequency noise power comes prima
from short pulses or from fine structure on long pulses, i
whether the common analysis in terms of distributions
parameters of elementary events is applicable. Our key
of the hypothesis that the form ofS1@ f 1# is determined by
the distribution of the pulse widths will be whether the tim
dependent spectral power at high frequencies fluctuates i
pendently of the spectral power and of the voltage at m
lower frequencies. We also look for time-asymmetric high
order voltage correlations, to specifically check a predict
~derivable from the ABBM model or from any model that
strictly mathematically equivalent to it! that all such mo-
ments are symmetrical@16#. In the models invoking interact
ing parts of a domain wall, the statistical properties~includ-
ing any semblance of self-organized criticality! depend
strongly on the demagnetizing effect@12–14#, which in turn
depends strongly on the geometry of the sample. We inv
tigate the dependence of the connection of events on dif
ent time scales on these long-range effects by altering
overall permeability of the sample with a magnetic yoke.

STATISTICAL TOOLS

It is useful to define some statistical tools used to anal
a time series$v@ t i #, 0< i<2m21%, where t i2t i 2151/f s ,
with f s being the sampling frequency. We use a running ti
average of the voltage over different time scales:

Vn~ j ![ (
i 52nj

2n~ j 11!21

v~ t i ! for 0<n,m

and 0< j <2m2n21. ~1!

In other words, we average 2n points to get a sequence o
voltages with an effective sampling rate off s/2

n. This run-
ning average then is useful in generating a Haar transfo
The Haar transform has an advantage over the Fourier tr
form F(v) @used to generate the ordinary power spectr
S1( f 1)# in that the Haar transform gives up unused frequen
6363 © 1998 The American Physical Society
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6364 57J. R. PETTA, M. B. WEISSMAN, AND GIANFRANCO DURIN
resolution in exchange for improved time resolution, allo
ing one to keep better track of how the power in some f
quency range varies@16#. We define the Haar power:

Hn~ j ![@Vn~2 j 11!2Vn~2 j !#2 for 0< j <2m2n2121.
~2!

In order to express this Haar power in ordinary tim
frequency units, we define:

H~ f 1 ,t ![Hn~ j !, where f 15 f s/2
n11

and t5~ j 11!2n11/ f s . ~3!

This Haar spectrum resembles the Fourier spectrum, ex
that each point contains Fourier components distributed o
a range of a few octaves. Following previous work@17#, we
define a normalized second spectrum~involving a fourth mo-
ment ofv! by

S2~ f 2 , f 1![F„H~ t, f 1!…~F„H~ t, f 1!…!* /^H~ t, f 1!&2. ~4!

Although it is often convenient to subtract theS2( f 2 , f 1) that
would be produced by Gaussian noise, that procedure
unnecessary here due to the highly non-Gaussian natu
the noise. We define another spectrum, involving a third m
ment ofv, useful for showing the connection between puls
on one time scale and power on higher-frequency scales

S1.5~ f 2 , f 1![F„v~ t !…~F„H~ t, f 1!…!* /^H~ t, f 1!&. ~5!

Several qualitative features of these statistical charac
izations directly correspond to properties of the underly
model. In any model in which each pulse has a narrow d
tribution ~on a logarithmic scale! of characteristic rates an
the pulses occur independently of each other,S2( f 2 , f 1) will
be nearly independent off 2 , since the pulses contributing t
the noise at frequenciesf 1 will not have any characteristic
rates f 2! f 1 . Likewise, if the high-frequency tail ofH( f 1)
primarily comes from distinct short-duration Barkhaus
pulses, the correlation coefficient between low-frequen
voltage fluctuations and low-frequency fluctuations in hig
frequency noise power, i.e.,S1.5( f 2 , f 1)/„S1( f 2)S2( f 2 ,
f 1)…0.5, will be a strongly decreasing function off 1 / f 2 , since
the rapid pulses~duration about 1/f 1! will be uncorrelated
with the longer pulses~duration about 1/f 2!. Thus we will
have several tests of the proposition that the power in dif
ent frequency ranges comes from separate events.

The ABBM model @6# also makes a simple qualitativ
prediction. The fundamental differential equation on which
is based can be converted by change of variables~solving for
the time derivative of the square root of the domain w
velocity, rather than for that of the velocity itself! into an
equation formally identical to that for a massless parti
with friction diffusing in thermal equilibrium in a potentia
well, albeit one with a peculiar shape@16#. All correlation
functions involving an even number of time derivatives f
any such system must obey time reversal symmetry. In
ticular, the imaginary part ofS1.5 must have zero expectatio
value in any such model.
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EXPERIMENTS

The experiments were performed on the as-quenc
amorphous alloy Fe21Co64B15. Details of Fe852xCoxB15
sample preparation and characteristics can be found in p
work @15#. The dimensions of the sample ribbon we
20 cm30.9 cm335mm. This sample geometry helps to re
duce the effects of the demagnetizing field. The sample
domain walls aligned parallel to the length of the ribbo
with a total of about 50 domain walls. A small pickup coil o
50 turns wrapped around the center of the sample ove
1-mm section detects the Barkhausen noise, while a coun
wound air core coil of 50 turns connected in series with
pickup coil offsets the induced voltage from the appli
magnetic field. Domain wall motion in the region of th
pickup coil induces a voltage in the coil proportional to t
sum of the velocities of the domain walls. A 16 cm lon
solenoid applies the external driving field along the length
the sample. Usually a triangular wave form is used to ke
the magnetization rate constant during the data-taking in
vals. An adjustable magnetic yoke allows changes in
sample’s effective permeability. The entire setup was pla
in a mumetal box in a shielded room. Figure 1 shows th
hysteresis loops, collected by integrating over t
Barkhausen signal, corresponding to three effective per
abilities obtained with different yoke positions.

Driving frequencies for these experiments ranged fr
0.01 to 1 Hz, giving values ofc ~a standard dimensionles
parameter describing the magnetization rate, withc51 at the
crossover from a voltage distribution peaked at zero to
peaked at a finite value@6#! ranging from 0.2 to 1. A 12 bit
Hewlett Packard analog to digital converter collected 40

FIG. 1. Fe21Co64B15 hysteresis loops for three effective perm
abilities, changed by varying the separation between the magn
yoke and the sample, with the lowest permeability correspondin
no yoke. The maximum applied field in the hysteresis loops co
sponds to the maximum applied field during the data acquisi
sweeps. Data were acquired only in the linear region of the hys
esis loop.
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57 6365BARKHAUSEN PULSE STRUCTURE IN AN AMORPHOUS . . .
point voltage time series, which were then Fourier or H
transformed and squared to give the power spectrum@16#.
All of the data in this article, except for the hysteresis loo
have been averaged over 350 sweeps, corresponding rou
to 85 000 Barkhausen events. The odd-order statistics (S1.5)
are averaged only over one sign of field sweep. The raw d
from S1.5 andS2 were smoothed using a Stineman functi
@18#.

RESULTS

It is convenient to characterize the magnetization rate
ing the parameterc, which can be determined by comparin
the experimental probability density function for th
Barkhausen voltage with the predictions of the ABB
model @6#, as illustrated in Fig. 2. Figure 3 contains pow
spectra at three different values ofc for m50.085. These
power spectra and voltage distributions closely resem
those measured previously on similar materials@15#. The de-
pendence of the low-frequency cutoff onc is consistent with
predictions of the ABBM model@6#.

Figure 4 shows a time series collected forc50.7 andm
50.063. Qualitatively, the data do not seem to sepa
cleanly into simple pulses with a single characteristic ti
associated with each pulse. Our statistical analysis is ma
used to quantify this impression.

Figure 5 showsS2 for five different f 1 . The data were
collected atc50.2 with a permeability of 0.063. For fixe
f 1 , S2( f 2 , f 1) peaks nearf 2515 Hz, just asS1( f 1) peaks
near f 1515 Hz. At higher frequencies,S2( f 2 , f 1) falls off
approximately asf 1

20.35 and f 2
20.35. This means that thevari-

ancein the high-frequency power does not come from ind
pendent short-duration pulses~which would giveS2 indepen-
dent of f 2! but rather from events on time scales much lon
than 1/f 1 .

FIG. 2. A domain wall velocity probability distribution curve
The points represent the raw data, while the curve correspond
the ABBM prediction forc50.27.
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The question of how much of thepower in high frequen-
cies comes from distinct high-frequency pulses rather t
from high-frequency structure on low-frequency pulses is
settled by determining that thevariance comes from such

to
FIG. 3. Power spectra representing three different values oc

for m50.085 normalized bySI. The low-frequency portion of the
power spectra are consistent with the ABBM model, in which
increase inc causes a decrease in the low-frequency power and
increase in the cutoff frequency.S1( f 1) fall off as f 1

21.2 near 100 Hz
and asf 1

21.8, above 1 kHz. The ABBM model predicts a slope
f 1

22 for large f 1 .

FIG. 4. Three consecutive time series collected forc50.7 and
m50.063 collected under similar conditions as those used for
higher-order spectral analysis. The long avalanche in the mid
sweep has a duration of approximately 8.6 ms.
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6366 57J. R. PETTA, M. B. WEISSMAN, AND GIANFRANCO DURIN
structure. This question can be addressed usingS1.5( f 2 , f 1),
shown in Fig. 6 for the same set of data as used in Fig
S1.5( f 2 , f 1) depends only weakly onf 1 , indicating that the
noise power at high frequencies contains a large tail fr

FIG. 5. Normalized second spectra for fivef 1 as a function of
f 2 . The spectra fall off asf 1

20.35 and asf 2
20.35. These data were

collected forc50.2 andm50.063.

FIG. 6. Normalized 1.5 spectra collected on the same data u
for Fig. 5. The spectra show weak dependence onf 1 and fall off as
f 2

20.85 near f 15100 Hz. The high-frequency exponent is appro
mately f 2

21.5.
5.
pulses with duration much longer than 1/f 1 . For example, a
pulse at 40 Hz contributes almost as much fractional v
ance to the power at 5 kHz as at 1 kHz, so that it must a
contribute nearly as high a fraction of the power at 5 kHz.
order to account for the near independence ofS1.5( f 2 , f 1) on
f 1 , the fraction of theH( f 1) that comes from that tail canno
fall off faster thanf 1

20.13 in this regime. Given the form of
S1( f 1), about f 1

21.8 in this range, that requires that the low
frequency pulses have high-frequency tails that fall off
about f 1

21.8 to f 1
21.9. As a function of f 2 , S1.5( f 2 , f 1) falls

off approximately asf 2
20.85 near 100 Hz and asf 2

21.5 above
about 1 kHz, a more dramatic break from simple power-l
dependence than found inH( f 1) or S1( f 1).

The higher-order spectra are altered by changes in
driving frequency. Figure 7 showsS2( f 2 , f 1) for three values
of c. An increase in the driving frequency results in th
sampling of more pulses, reducing the magnitude ofS2 ,
sinceS2 is normalized to represent fractional fluctuations
power. Asc is varied, the low-frequency cutoff ofS2( f 2)
changes in just the same way as the low-frequency (f 1) cut-
off in H( f 1) or S1( f 1), as expected ifS2( f 2 , f 1) results from
structure on 1/f 1 time scales in pulses of duration 1/f 2 .

By altering the separation distance between the sam
and the yoke it is possible to change the effective permea
ity of the sample. Figure 8 showsS2( f 2 , f 1) for three perme-
abilities atc50.45. The low-frequency cutoff frequency de
creases with increasingm, as does the cutoff frequency o
S1( f 1). Figure 9 shows the real part ofS1.5( f 2 , f 1) taken
from the same data in Fig. 8, again showing the same l
frequency dependence onm.

Time asymmetries are easily found by examining t
imaginary part of S1.5( f 2 , f 1). Figure 10 shows

ed

FIG. 7. Normalized second spectra for three different values
c all collected at m50.085. Spectra forf 1510 kHz and f 2

55 kHz are plotted on separate scales for clarity. The magnitu
of the second spectra and the cutoff frequency are highly depen
on the driving parameterc.



d

e-
a

at
ct
a

he

e-

es
o

h

u
tu
th
lyz
nd
t

s
si
fu
se
nt

an

ling
he

x-
, as

o

tio
n

of
cond

tion
n

age,
The

of

57 6367BARKHAUSEN PULSE STRUCTURE IN AN AMORPHOUS . . .
Im„S1.5( f 2 , f 1)…/Re„S1.5( f 2 , f 1)… is generally positive, which
indicates~given the sign convention in our program! that, on
average, any spurt of low-frequency noise power is prece
by one of high-frequency noise power. Im„S1.5( f 2 , f 1)…/
Re„S1.5( f 2 , f 1)… is an increasing function off 2 up to frequen-
cies a bit less thanf 1 , which means that the time asymm
tries arise mostly from asymmetrical structure on individu
pulses, rather than from distinct precursor events separ
on time scales longer than the pulses themselves. Inspe
of Fig. 4 shows some apparent asymmetry of this type,
though it is hard to judge reliably by eye without taking t
average of the higher-order statistics. Im„S1.5( f 2 , f 1)…/
Re„S1.5( f 2 , f 1)… is nearly independent of the effective perm
abilities over the range used in this experiment.

DISCUSSION

Models employing distributions of independent puls
with the spectral shape determined by the distributions
pulse widths and heights, fail qualitatively to describe t
higher-order spectra. The weak dependence ofS1.5( f 2 , f 1) on
f 1 shows that most of the power in the high end of o
observed frequency range actually comes from fine struc
on the same long pulses giving the low-frequency part of
spectrum. If one nevertheless attempted to formally ana
the data in terms of a distribution of pulse widths a
heights, the magnitude ofS2 provides an extra constraint no
present when analyzingS1 alone. The resulting distribution
would be unrealistic, e.g., pulse heights that are decrea
functions of width in the 1 kHz regime. Thus a success
model must predict not only the distribution of the pul
widths but also the distribution of frequency compone
within single pulses.

There are also deviations from the more interesting

FIG. 8. Normalized second spectra for three different values
m all collected atc50.45. Spectra forf 1510 kHz andf 255 kHz
are plotted on separate scales for clarity. The low-frequency por
of the spectra and the cutoff frequency are clearly dependent om.
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generally more successful ABBM model.V(t) in that model
is self-affine, i.e., a change of time scale produces a sca
change in voltage scale, above the low-frequency cutoff. T
failure of S1( f 1) to have a single high-frequency scaling e
ponent already indicates some deviation from that picture

f

n

FIG. 9. ~a! Normalized 1.5 spectra for three different values
m taken from the same time series used to calculate the se
spectrum in Fig. 8. Spectra forf 1510 kHz andf 255 kHz are plot-
ted on separate scales for clarity. Again, the low-frequency por
of the spectra and the cutoff frequency are clearly dependent om.
~b! Im„S1.5( f 2 , f 1)…/Re„S1.5( f 2 , f 1)… for f 1510 kHz from the same
data used in Fig. 8. The positive sign indicates that, on aver
low-frequency pulses are preceded by higher frequency pulses.
Im„S1.5( f 2 , f 1)…/Re„S1.5( f 2 , f 1)… spectra are nearly independent
m.
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6368 57J. R. PETTA, M. B. WEISSMAN, AND GIANFRANCO DURIN
has been noted generally for amorphous materials@15#. The
existence of strongly time-asymmetric correlation functio
~i.e., the imaginary component ofS1.5! is another qualitative
violation of the ABBM picture. Such asymmetries can ar
if the effective pinning field is non-Gaussian@16#, rather than
the Gaussian field assumed in the ABBM picture. It wou
be interesting to check simulations of interacting doma
wall-segment pictures to see if similar asymmetries appea
in them.

Time-asymmetric higher-order correlations are known
turn up in some self-organized dynamical systems, such
earthquake models with nonlinear local friction@19# or
slowly driven sandpiles@20#. The general physical picture o
the asymmetries in such models is that small, rapid eve
smooth the strain distribution, setting the scale for larg
slower events involving more sites. Our results share a g
eral property with many such slowly driven dynamical sy
tems, in that the events on different time scales are clo
linked. It would not be correct, however, to describe o
results as exhibiting ‘‘self-organized criticality,’’ since the
is no extended critical scaling regime of any type in the
data.

FIG. 10. S1.5( f 2 , f 1)/„S1( f 2)S2( f 2 , f 1)…0.5 collected forc50.2
andm50.063. The correlation coefficient is nearly constant forf 1

,600 Hz and then rapidly decreases above 800 Hz.
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The correlation coefficient between the low-frequen
fluctuations inV(t) and the envelope of high-frequency flu
tuations in V(t), i.e., S1.5( f 2 , f 1)/„S1( f 2)S2( f 2 , f 1)…0.5,
shows a particularly sharp deviation from any simple scal
law. This deviation suggests a qualitative interpretati
Most of the noise power in this regime of experimental p
rameters comes from pulses whose lowest characteristic
quencies range from about 10 Hz to about 1 kHz. In t
frequency range, the distribution of pulse widths apparen
plays a role in determining the spectral shape, since ther
high, nearly constant correlation exhibited in the normaliz
S1.5, as shown in Fig. 10. However, above 800 Hz the c
relation coefficient between fluctuations inV(t) and the en-
velope of higher-frequency fluctuations rapidly falls off.

The apparent meaning is that the noise power at frequ
cies above a few kHz does not arise from pulses whose l
est characteristic frequency is over 800 Hz. Since there
break in the scaling ofS1( f 1) near 800 Hz, the most obviou
interpretation would be that the spectral shape above
frequency reflects the distribution of Fourier compone
within the longer pulses, rather than the distribution of pu
widths. Although the frequency power law ofS1( f 1) is
steeper above 800 Hz than below, extrapolation to the lo
frequency cutoff would still indicate that even at 800 H
more than 30% of the power comes from pulses with low
characteristic frequency near the low-frequency cuttoff.

We conclude that under the conditions of a typic
Barkhausen experiment in a soft amorphous metallic fe
magnet, a simple distributed-pulse parameter model does
even approximately capture the relation between event
different frequency scales. The ABBM equations describ
a moving domain wall also are inconsistent with some of
statistical features. It remains to be seen what features~e.g., a
realistic geometry! are needed in a model of interacting d
main wall segments to capture the actual behavior obser
including time asymmetries and strong deviations from sc
ing.

In contrast to these results, data on single-crystal 3 w
Si-Fe ~which has a less nearly rectangular hysteresis lo!
are much more nearly compatible with an independent-pu
model @21#. Among the factors that might account for th
difference are effects connected with the shape of the hys
esis loop@22# and the effect of the lower density of movin
domain walls in the FeSi.
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